

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyHoloDeck 0.0.1 documentation

HoloDeck

Holodeck is an attempt to write an immutable server build chain
for Python packages.

At the moment I have a means to build .deb packages from a
python package (say hosted on github, with a working setup.py file)

The build can occur on a spun up cloud server thus meaning the build
willcorrectly target the final destination OS, no matter what your
laptop runs.

Then we can spin up a destination cloud server and using saltstack /
ansible (in transition) we can deploy the package, and configure it
using holo-config)

I have introduced a Docker build after this, so the final artifact can
be either .deb or a docker image.

This .deb file can then be taken to another server, built in the cloud
using salt also, and installed. That way we can build our version of a
package once, and move it from test to production, confident we are
using the same code, same binary on live as we tested.

Holodeck is based on the rant [http://hynek.me/articles/python-app-deployment-with-native-packages/]
of Python Core Committer Hynek Schlawack.

It also owes a lot to parcel - not
necessarily that any of the codebase is the same but for the sheer get
on and do it. Sadly, I could not muster the energy to cross the
hg/git divide so instead of contributing patches I simply redid. They
have better looking docs too.

HoloDeck is an attempt at a pun - the core idea is to wrap up an
entire virtualenv and pass it from host to host. In other words we
enclose virtual environments. I never said it was a good pun.

The idea is to build a new wrapped venv for every commit, and install
it onto immutable servers as it progresses through testing.

I hope this will facilitate more Python (web) packages in the
micro-services style.

Contents

	HoloMaker

Salt Notes

	Install salt-master

	Writing your first salt module

	Improved Salt Modules

	Immutable salt

	Salt and State

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyHoloDeck 0.0.1 documentation

HoloMaker

Imagine we want to guarantee a consistent deployment of a single Python package. PyHolodeck is designed to make this simple, but no simpler.

API Docs

Create .deb files from python venvs as artifacts for deployment

app_path is where we create the virtual env and it is also the
destination for the final target venv. We cannot avoid this - .deb
creates it from dirs

todo: convert to run autmaotically within python (not pront cmds)
todo: discvover postinst files and add as cmd switches to fpm
todo: have some core service that postinst can call (fabric?)
todo: chain to build servers

We need to hace fpm natively installed

	
class pyholodeck.maker.DeployConfig(filepath)[source]

	Accept json file, simple convervsion to hold it all
lots of very big assumptions here !

	
class pyholodeck.maker.Deployment(app_name, giturl)[source]

	
	A big wrapper around different stages in making the

	python package into a .deb

We are building a simple solution
1. We build on local disk, in the expected locations, a venv

representing the state of the venv we want eventually to deploy

	We wrap that venv, with the python interpreter etc, into
a .deb file (tarball basically).

	We define a saltstack file that will deploy the .deb file
artifact to our infrastructure. This file will define how to
create the .ini / .conf files that will be put into well-known
locations for the configuration of the package.

	We define in the package the conf template for reference

Alternatively the artifact can be a Docker image that contains
our .deb file

	
BASE_PATH = '/mikado'

	the root where the final .deb installed code will get put
it is also, for ease of building .debs, where we put the code
so the .deb making stage can find it

	
python_exe = None

	the interpreter in this venv

	
src_path = None

	where we will extract the git source to before runing setup

	
class pyholodeck.maker.Docker_Salt[source]

	

	
class pyholodeck.maker.SubCmd(cmdlist, pythonstmt=None, args=None)[source]

	Smoothly act as store of a subprocess cmd

we want to have same command as a list for non-shell
and in friendly form.

nb Its a lot easier to .join a list than parse a string

	
pyholodeck.maker.gitfetch(url, parentfolder)[source]

	Given a git url, retrieve to parentfolder

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyHoloDeck 0.0.1 documentation

Install salt-master

I am focusing on rackspace for salt-cloud.

Initially I build a cloud server, and then convert it into a salt-master.
You could use your laptop, but thats not a particularly long term solution.

Installing salt onto ubunutu 12.04:

sudo apt-get -y install python-software-properties
sudo add-apt-repository -y ppa:saltstack/salt
sudo apt-get update

sudo apt-get -y install salt-master
sudo apt-get -y install salt-minion
sudo apt-get -y install salt-cloud
delete as applicable

We now have a salt-master on a host, lets put salt-cloud up

Basic Directory Layout

There are two directorys to worry about

	/etc/salt - basic config for both cloud, master, minion

	/srv/salt - location of all the files we are going to put on minion. (Its more complex than that but thats the simplest explantion)

configure the cloud

In /etc/salt we want to create / adjust two files, /etc/salt/cloud.providers
holds credentials and identifiers for our cloud account. /etc/salt/cloud.profiles

salt-cloud is going through a revamp of it’s configuration, and the new stuff is not quite ready for prime time. This works to date.

/etc/salt/cloud.providers

my-rackspace-config:
 # Set the location of the salt-master
 #
 minion:
 master: saltmaster.example.com

 # Configure Rackspace using the OpenStack plugin
 #
 identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
 compute_name: cloudServersOpenStack
 protocol: ipv4

 # Set the compute region:
 #
 compute_region: DFW

 # Configure Rackspace authentication credentials
 #
 user: myname
 tenant: 123456
 apikey: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 provider: openstack

/etc/salt/cloud.profiles:

mikado_512:
 provider: mikado-rackspace
 size: 512MB Standard Instance
 image: Ubuntu 12.04 LTS (Precise Pangolin)

I have linked this minimal profile called mikado_512, to the rackspace account
mikado-rackspace, with the sizes and images configured from (tbd).

Bring up our first minion

sudo salt-cloud -p mikado_512 minone

We are telling salt-cloud to create a minion, using the mikado_512 profile
defined above, and the provider details, and call that minion minone.

When it exists we can do lots of fun things with the minion, from salt-master.

171 salt '*' test.ping
172 sudo salt '*' test.ping
173 sudo salt 'myinstance' test.ping
174 sudo salt 'myinstance' sys.doc
175 sudo salt 'myinstance' timezone.get_zone
176 sudo salt 'myinstance' cmd.run 'ls -l /tmp'
177 sudo salt 'myinstance' pkg.install emacs

This is all very well, but still fairly manual and prescriptive. Lets move on.

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyHoloDeck 0.0.1 documentation

Writing your first salt module

Salt modules are simply python files that are executed by the running minion on
the minion-server, after being told to by the salt-master. Some environment and
configuration can be passed in, but most of what we need is available by
introspecting the minion-host.

Where to put a salt module?

First create {FILES_ROOT}/_modules/.
FILES_ROOT is defined in /etc/salt/master, and defaults to /srv/salt

Now create a python module in the _modules directory, such as pbrian.py

Simplest possible salt module:

import salt

def hello()
 return "hello world"

And that’s it.

Synchronise from the salt-master to the minion(s)

salt '*' saltutils.sync_all
 ^
 selects which minions

 $ sudo salt 'myinstance' saltutil.sync_all
 myinstance:

 grains:
 modules:
 - modules.pbrian
 outputters:
 renderers:
 returners:
 states:

This will synch the _modules directory (and lots else) from master to minion.
So modules are either those you have written and deployed into _modules
yourself, or are properly incorporated into the main salt repos

Now run your module on the minion

$ sudo salt 'myinstance' pbrian.hello
myinstance:
 hello world

Hooray!

So lets recap.

We can manually build a salt-master.
We can then auto build any number of minions (up to our credit card limit !)
Then we can write a python module to do anything on the minion, deploy it and
get its output returned to us.

Next steps

	Better Python Integration.

	Actually building our build server.

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyHoloDeck 0.0.1 documentation

Improved Salt Modules

We now want to get a little more useful.

Developing locally

Synching and running commands remotely is all very well, but sometimes we need to develop locally
to the salt-master. That’s fine:

We can fiddle with the local minion modules dir found here:

 /var/cache/salt/minion/extmods/modules/pbrian.py

Or we can alter local `\etc\salt\minion` file and add our chosen location to `modules_dir`

This is the simplest and fastest means to develop a module, at least until
we delve deeper into saltstack. Do remember that a sync will overwrite your changes !!

Making a minion do something useful

Firstly we shall look at grains

Grains
 Static bits of information that a minion collects about the system when the minion first starts.

I can use them from the CLI:

sudo salt '*' grains.ls

However this is more fun:

import salt

def show_grains():
 return __grains__

Which gives us:

/snip
cpu_model:
 AMD Opteron(tm) Processor 4170 HE
cpuarch:
 x86_64
defaultencoding:
 UTF-8
defaultlanguage:
 en_US
/snip

or even:

import salt

def show_grains():
 return __grains__['pythonversion']

So, let’s sync up the current local pbrian.py with our minion.

sudo salt 'myinstance' saltutil.sync_all

Running salt programmatically

Let’s write a simple python script, in our home-dir.

import salt.client
client = salt.client.LocalClient()
ret = client.cmd('myinstance', 'show_grains',[])
print ret

gives us:

{'myinstance': [2, 7, 3, 'final', 0]}

A python dict, returned from a remote minion, ready for manipulation here.

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyHoloDeck 0.0.1 documentation

Immutable salt

I intend to use salt as an automated build tool, for which I wish to use
the concept of immutable servers [http://www.thoughtworks.com/insights/blog/rethinking-building-cloud-part-4-immutable-servers].

Mostly its pretty simple - have one automated build system to build a (virtual) server from scratch,
and make sure that server is exactly the same each time. Same OS, same package installs, same config files.

Change something? Thats a new version - a different immutable server.

Need to upgrade nginx, then your SaaS app needs to get pulled off v.1.2.3 servers and onto v.1.2.4

You do not upgrade nginx in-situ.

Thats it really.

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyHoloDeck 0.0.1 documentation

Salt and State

Recap

So far we have covered the basics of how salt works (It puts a service called a
minion onto a host, and that minion calls back to a 0MQ server for instructions from
a salt-master)

We can build minions manually (boo-hiss) or we can use salt-cloud to build VMs in
our provider of choice.

Then we can write simple modules that just do-stuff on the minions. There are a lot
of these.

While most of the time this is used for server config, in fact this is an ad-hoc
remote execution setup. And it knocks fabric into a cocked-hat.

One minor issue

OK, OK. Security. Its a biggie. The salt team has written it’s own security setup.
It has been reviewed. But salt is growing at such a pace, and the sheer difficulty of
doing this right indicates that salt could face a big, stonking hole in the future.

Its worth bearing in mind, especially as everything runs as root (!).

However security is a trade off, and salt brings a lot to the party and looks to be making
simple security choices. I am unable to compare it to chef or puppet, however my previous
choice of fabric relied on ssh - which is a real battle-tested comms system.

In the end, if you have a bunch of servers automated, I suspect that rogue injection of commands
into zeroMQ is less likely than attacking salt-master directly.

So I will stick with it.

Managing State

OK. I could issue one command after another, expect-style to create my remote servers.

But that would be the old-way.

So now we manage state with config files, and let the minion work out how to get there.

I would recommend reading this now, or very soon http://docs.saltstack.com/ref/states/

top.sls

The top file determines which state files are going to be synched with which minions.

/srv/salt/top.sls:

base:
 '*':
 - nginx

Now, that means every machine we have will get nginx installed on it (maybe not great)
Next we need to define the nginx state that we want.

/srv/salt/nginx/init.sls file:

$ ls /srv/salt/nginx/
init.sls nginx.conf

/srv/salt/nginx/init.sls:

nginx:
 pkg:
 - installed
 service:
 - running
 - enable: True
 - require:
 - pkg: nginx
 - watch:
 - file: /etc/nginx/nginx.conf

/etc/nginx/nginx.conf:
 file.managed:
 - source: salt://nginx/nginx.conf

/srv/salt/nginx/nginx.conf:

user www-data;
worker_processes 4;
pid /var/run/nginx.pid;

events {
 worker_connections
...

Now we install it:

<salt-master>$ sudo salt 'myinstance' state.highstate

And after a while we can visit the host in a browser:

[image: https://raw.github.com/mikadosoftware/screengrab/master/screenshots/salt-nginx.png]
 [https://raw.github.com/mikadosoftware/screengrab/master/screenshots/salt-nginx.png]

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyHoloDeck 0.0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyholodeck	

 	
 	
 pyholodeck.maker	

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyHoloDeck 0.0.1 documentation

Index

 B
 | D
 | G
 | P
 | S

B

 	

 	BASE_PATH (pyholodeck.maker.Deployment attribute)

D

 	

 	DeployConfig (class in pyholodeck.maker)

 	Deployment (class in pyholodeck.maker)

 	

 	Docker_Salt (class in pyholodeck.maker)

G

 	

 	gitfetch() (in module pyholodeck.maker)

P

 	

 	pyholodeck.maker (module)

 	

 	python_exe (pyholodeck.maker.Deployment attribute)

S

 	

 	src_path (pyholodeck.maker.Deployment attribute)

 	

 	SubCmd (class in pyholodeck.maker)

 Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

 workstation.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

Salt basics again

I am building a salt-controlled workstation, which has my security antennae
jingling but it still seems a good idea.

I use the FreeBSD usb-stick to wipe a machine, then pull down
“bootstrap.saltstack.org” (which is a pointer to the github repo latest).

This will install saltstack (Python, SWIG, few other bits, and the saltstack repos) on our workstation. Then we are almost ready to go.

update minion to have our salt master as its master
/usr/local/etc/salt/minion::

master: salt.mikadosoftware.com

providers:
 pkg: pkgng

Here we are altering the minion config file in two ways. Firstly we set the
master to be salt.mikadosoftware.com. The default behaviour is to assume
salt.<search term in /etc/resolv.conf> is the master, but I prefer to be
explicit.

Secondly,

Note this approach is only needed for a laptop. A cloud server salt-master is able to setup its own minions without regard for our attention span.

$ sudo salt-key -d cube
The following keys are going to be deleted:
Accepted Keys:
cube
Proceed? [N/y] y
Key for minion cube deleted.

matching:
>>> import socket
>>> socket.getfqdn()
‘cube.mikadosoftware.com’

Upgrading salt

upgrade master, then minions.

salt --version

Use the packaging approach for the master (apt-get / pkg)

		def _check_pkgng():

		‘’’
Looks to see if pkgng is being used by checking if database exists
‘’’
return os.path.isdir(‘/usr/local/etc/pkg/repos/’)

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

docker.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

Docker and Salt and Python

Docker is a useful abstraction level for managing deploymebnts (just
as the holodeck is) and I want to combine the two.

Additionally I want to use SaltStack to install the applicaions etc
into docker because the scripting of a dockerfile is ... a bit
limited.

Todo

		reduce config to simplest possible DONE

		run an e2e build from git src to docker, and that has a web server running in it.

OK - need to run saltminion docker, and then install /tmp/.deb and then setup
entrypoint to run it.
Also need to think how to use salt master to run docker comands

then combinemaker.py and saltmaker.py

The overview

I will create a base image of a Docker image with a salt-minion in it from
a Dockerfile

I will then update and adjust that image to hold whatever code i need using
salt instructions

I will then ‘commit’ those changes to a new image, labelled appropriately.

Rinse and repeat.

Building a Python Development Environment

I will do this “properly” - which means less mucking about with my host
system and more developing on VMs. So I will first define a salt state
that will be my Python development enviornment, y’know, 3.4, with pip
and a few other bits.

In thoery that could be the base image for releasing apps I develop on that
dev env.

Stage 0

Prepare the host to run docker and salt-master

apt-get install docker

docker networking

https://docs.docker.com/engine/reference/run/
For performance reasons we should run in host network mode on prod.

Stage 1

Prepare a base image.

$ docker pull debian:jessie

This will get the latest jessie debian image locally for us.

Stage 2

/foo/bar/DockerFile:

dockerfile to build simple salt minion
from which I can populate using salt and then build new docker images

FROM debian:jessie
RUN apt-get update
RUN apt-get install -y salt-minion

$ docker build -t mikadosoftware.com/pybase:0.0.1 .

$ docker images

Stage 3

Run the image, ensuring we start the minion and it tries to call home to master.

		$ docker run –add-host=salt:192.168.0.107

		–hostname minion –name minionname

salt-minion

pbrian@HPCube:~/projects/pyholodeck/docs$ sudo salt ‘minion’ test.ping
minion:

True

add-host: will add entry to hosts file on container, so we cand route out
hostname and name is for ease of not reading hashes.

Stage 4

Define a salt state for python

https://github.com/saltstack/salt/blob/develop/salt/modules/dockerng.py

https://www.logilab.org/blogentry/290489

http://stackoverflow.com/questions/25129553/how-can-i-validate-a-salt-minions-key-fingerprint-before-accepting-it-on-the-ma
https://docs.docker.com/engine/userguide/containers/dockerimages/

		we

Useful notes

docker images

		list containers:

		docker ps -a

		delete containers

		docker rm <idNumber>

		list images

		docker images

		remove images

		docker rmi <imageID or tag>

You need to remove containers that xist (started or stopped) that
are runing off images

		docker run -it <image>

		interactive and ptty

http://stackoverflow.com/questions/21553353/what-is-the-difference-between-cmd-and-entrypoint-in-a-dockerfile
The ENTRYPOINT specifies a command that will always be executed when the container starts.

The CMD specifies arguments that will be fed to the ENTRYPOINT.

So if I use the follwoiong format for my entrypoint and cmd:

ADD startup.sh /root
RUN chmod 0777 /root/startup.sh
ENTRYPOINT ["/bin/bash", "/root/startup.sh"]
CMD ["Arg From Dockerfile"]

and have this in /root/startup.sh:

echo "Running startup script. Args are " $1

I can run these

$ docker run -it mikadosoftware.com/holobase:0.0.1
Running startup script. Args are Arg From Dockerfile

$ docker run -it mikadosoftware.com/holobase:0.0.1 foo
Running startup script. Args are foo

GoogleBreadcrumbs

[ERROR] The Salt Master has cached the public key for this node, this salt minion will wait for 10 seconds before attempting to re-authenticate

[ERROR] The Salt Master has cached the public key for this node, this salt minion will wait for 10 seconds before attempting to re-authenticate

This means “your salt master has not yet accepted my key”

Attach

docker attach nonenetcontainer
Note: You can detach from the container and leave it running with CTRL-p CTRL-q.

Biblio

http://www.schwabenlan.de/en/blog/2014/08/07/testing-and-deploying-salt-formulas-via-docker

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

_static/comment-close.png

best_practises.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

Best Practises for Immutable Servers and holo-environments

		Built from scratch via script. No mucking about hand tooling.

		drop in config. Also can I re-config without re-start?

		logging

		app layout

		testing and reporting

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/down.png

adding_a_user.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

Adding a user to a minion

Oddly enough this is not something we need to do much - but I want to see
for myself any changes going on.

Its more awkward than you might think.

Useful stuff

/etc/nginx/nginx.conf:
 file.managed:
 - source: salt://nginx/nginx.conf

This is a common state defintion found in a .sls file. It can be translated roughly as “the name of this directive is /etc/nginx/nginx.conf, as the minion,
run the python function managed() found in file.py. The github location is https://github.com/saltstack/salt/blob/develop/salt/states/file.py

The dirroot for salt:// is file_roots defaulted to /srv/salt. So thats saying copy the file(s) at /srv/salt/nginx/nginx.conf over to the minion, and have the minion apply it to the name of the state or /etc/nginx/nginx.conf

.sls files are simply YAML representations of a python dict. The YAML is converted into a python dict and then passed into saltstack for futher processing. THis means we could just pass in a python dict.

To manually add a user on a minion, just for a look-see:

on salt-master:

$ mkpasswd -m sha-512 mypassword
6xxxxx

then

sudo salt 'minion' shadow.set_password paultest '6xxx'

(NB use single quotes to avoid bash trying to interpret $6 etc)

We can now create a file in master:/srv/salt called user.sls (nb .sls file naming - we can name it anything we want aslong as we refernce it in top.sls. However user.present in the yaml below is a call to function present() in module user in salt/states python package.

tom:
 user.present:
 - fullname: "Tom Jones"
 - groups:
 - sudo
 - password: "6KnCTpLcE/QBK$nEVZZ/6K40LawBDQ4xNtTktpcp4XoUtWoGDD0JDF5nw5pH1BZgXAuqwplCVx0dS23t3EKSHrxKRhZc55QH7tJ0"

So We can create a state, now lets look at debugging.

Biblio

http://dev.mlsdigital.net/posts/SaltStackBeyondJinjaStates/

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

 All modules for which code is available

		pyholodeck.maker

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_modules/pyholodeck/maker.html

 Navigation

 		
 index

 		
 modules |

 		pyHoloDeck 0.0.1 documentation »

 		Module code »

 Source code for pyholodeck.maker

#!/usr/bin/env python
-*- coding: utf-8 -*-

'''Create .deb files from python venvs as artifacts for deployment

app_path is where we create the virtual env and it is also the
destination for the final target venv. We cannot avoid this - .deb
creates it from dirs

todo: convert to run autmaotically within python (not pront cmds)
todo: discvover postinst files and add as cmd switches to fpm
todo: have some core service that postinst can call (fabric?)
todo: chain to build servers

We need to hace fpm natively installed

'''

import os
import pprint
import time

[docs]def gitfetch(url, parentfolder):
 '''Given a git url, retrieve to `parentfolder`
 '''

[docs]class SubCmd(object):
 '''Smoothly act as store of a subprocess cmd

 we want to have same command as a list for non-shell
 and in friendly form.

 nb Its a lot easier to .join a list than parse a string
 '''
 def __init__(self, cmdlist, pythonstmt=None, args=None):
 self.cmdlist = cmdlist
 self.pythonstmt = pythonstmt
 self.args = args

 def __repr__(self):
 if self.pythonstmt:
 return str(self.pythonstmt)
 else:
 return " ".join(self.cmdlist)

import json
[docs]class DeployConfig(object):
 '''Accept json file, simple convervsion to hold it all
 lots of very big assumptions here !
 '''
 def __init__(self, filepath):
 jn = json.loads(open(filepath).read())
 self.__dict__.update(jn)

 def __repr__(self):
 return "{} {}".format(self.__dict__['gitrepo'],
 self.__dict__['pkgname'])

[docs]class Deployment(object):

 '''A big wrapper around different stages in making the
 python package into a .deb

 We are building a simple solution
 1. We build on local disk, in the expected locations, a venv
 representing the state of the venv we want eventually to deploy
 2. We wrap that venv, with the python interpreter etc, into
 a `.deb` file (tarball basically).
 3. We define a `saltstack` file that will deploy the .deb file
 artifact to our infrastructure. This file will define how to
 create the .ini / .conf files that will be put into well-known
 locations for the configuration of the package.

 4. We define in the package the conf template for reference

 Alternatively the artifact can be a Docker image that contains
 our .deb file

 '''
 #: the root where the final .deb installed code will get put
 #: it is also, for ease of building .debs, where we put the code
 #: so the .deb making stage can find it
 BASE_PATH = '/mikado'

 def __init__(self, app_name, giturl):
 self.app_name = app_name.lower()
 self.pkg_name = self.app_name
 self.app_path = os.path.join(self.BASE_PATH, self.app_name)
 self.venv_path = self.app_path
 #: where we will extract the git source to before runing setup
 self.src_path = os.path.join(self.app_path, self.pkg_name) + "-src"
 #: the interpreter in this venv
 self.python_exe = os.path.join(self.venv_path, 'bin/python')
 self.pip_exe = os.path.join(self.venv_path, 'bin/pip')
 self.giturl = giturl
 self.cmds = []

 #for now just build bash commands for later
 def prepare_venv(self):
 #: build list of cmds to run.
 for cmd in (
 SubCmd(['rm', '-rf', self.venv_path]),

 SubCmd(['mkdir', '-p', self.venv_path]),

 SubCmd(['mkdir', '-p', self.src_path]),

 SubCmd(['virtualenv', '-p', '/usr/bin/python',
 self.venv_path]),

 #replace with with
 #self.cmds.append('. {}/bin/activate'.format(self.venv_path))

 SubCmd(['git', 'clone', self.giturl, self.src_path]),

SubCmd(['cd', self.src_path]),
 SubCmd([], os.chdir, [self.src_path]),
 #: dependancies
 SubCmd([self.pip_exe, 'install', '-r', 'requirements.txt']),

 SubCmd([self.python_exe, 'setup.py', 'install']),
 SubCmd(['fpm', '-s', 'dir', '-t', 'deb', '-p', '/tmp', '-n',
 self.pkg_name,
 self.venv_path])
):
 self.cmds.append(cmd)

[docs]class Docker_Salt(object):
 '''
 '''
 pass

def demo():
 d = Deployment('pyhello',
 'github:mikadosoftware/pyhelloworld.git')
 d.prepare_venv()
 import subprocess
 for cmd in d.cmds:
 print cmd, "..."
 time.sleep(1.5)
 if not cmd.args:
 print subprocess.check_call(cmd.cmdlist)
 else:
 cmd.pythonstmt.__call__(*cmd.args)

if __name__ == '__main__':
 import sys
 args = sys.argv[1:]
 if args:
 pkg = args[0]
 demo()
 else:
 print "really develop json contorl file"
 demo()

 © Copyright 2013, Paul Brian.
 Created using Sphinx 1.3.5.

